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Abstract Species such as stoneflies have complex life history details, with larval
stages in the river flow and adult winged stages on or near the river bank. Winged
adults often bias their dispersal in the upstream direction, and this bias provides a
possible mechanism for population persistence in the face of unidirectional river flow.
We use an impulsive reaction–diffusion equation with non-local impulse to describe
the population dynamics of a stream-dwelling organismwith awinged adult stage, such
as stoneflies. We analyze this model from a variety of perspectives so as to understand
the effect of upstream dispersal on population persistence. On the infinite domain we
use the perspective of weak versus local persistence, and connect the concept of local
persistence to positive up and downstream spreading speeds. These spreading speeds,
in turn are connected to minimum travelling wave speeds for the linearized operator in
upstream and downstream directions. We show that the conditions for weak and local
persistence differ, and describe how weak persistence can give rise to a population
whose numbers are growing but is being washed out because it cannot maintain a toe
hold at any given location. On finite domains, we employ the concept of a critical
domain size and dispersal success approximation to determine the ultimate fate of the
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populations. A simple, explicit formula for a special case allows us to quantify exactly
the difference between weak and local persistence.

Keywords Drift paradox · Non-local impulsive reaction–diffusion equation ·
Spreading speed · Persistence condition

Mathematics Subject Classification 92B05 · 35K57 · 34A38 · 37L15

1 Introduction

In the past decade, a number of modeling studies explored conditions and mecha-
nisms for population persistence and spread in habitats with unidirectional flow. Most
obviously, such environments represent streams and rivers (Speirs and Gurney 2001;
Pachepsky et al. 2005; Vasilyeva and Lutscher 2010; Sarhad et al. 2014; Samia and
Lutscher 2012), but similar models describe population dynamics in the face of cli-
mate change (Potapov and Lewis 2004; Berestycki et al. 2009), sinking phytoplankton
species (Huisman et al. 2002), as well as bacteria in the gut (Ballyk et al. 1998; Boldin
2008). In the context of streams and rivers, the question of persistence in the presence
of downstream advection dates back to ecological investigations of the “drift paradox”
(Müller 1982).

Two salient insights from these modeling studies are that (1) unbiased, random
movement may prevent wash-out and allow a population to persist locally, and that
(2) a benthic phase, sheltered from the downstream transport, greatly enhances the
ability of a population to persist locally. In either case, it is clear that high fecundity
aids persistence.

All of these studies considered a population with aquatic life stages only. However,
a key feature of the life cycle of many stream insects is the separation into (at least) two
stages: aquatic larvae andwinged adults. Only during the aquatic stages are individuals
exposed to downstream drift. In fact, the earliest proposed and most widely accepted
mechanism for population persistence in the face of advection is that adult upstream
flight conter-acts larval downstream drift (Müller 1954). This mechanismwas tested in
several empirical studies (Madsen et al. 1974; Williams andWilliam 1993; MacNeale
et al. 2005): there is clear evidence that several species of stoneflies and caddisflies do
bias their dispersal during the adult stage in the upstream direction. Moreover, often
bias is strongest in dispersing gravid females. We are aware of only one theoretical
study that considers the effect of multiple dispersal modes on the persistence of stream
populations (Lutscher et al. 2010). These authors found that dispersal bias, while not
necessary for persistence, can significantly increase chances of persistence.

In this paper, we present and analyze a novel mathematical model for a population
of stream insects with two distinct, non-overlapping life-cycle stages: an aquatic larval
stage and a winged adult stage. The model is in the form of an impulsive reaction–
advection–diffusion equation, where the partial differential equation describes the
downstream drift of the larval stage and an integral operator represents the outcome
of dispersal through adult flight. The advection–diffusion operator gives a reason-
ably accurate, yet mathematically tractable description of transport in streams and
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rivers while the integral operator allows us to accommodate a wide variety of empiri-
cally determined dispersal patterns. In our analysis of this continuous–discrete hybrid
model, we focus on two fundamental question of spatial ecology: spreading and trav-
elling wave speeds (for an unbounded domain) and the critical habitat size (for a
bounded domain). We express our results in terms of key biological and hydrological
parameters such as flow speed, motility of the organisms, adult dispersal patterns, and
population dynamics characteristics. This work builds on and generalizes the work by
Lutscher et al. (2010) by considering nonlinear dynamics and the reaction–advection–
diffusion equation explicitly, and the work by Lewis and Li (2012) by introducing
advection and a non-local impulse.

In Sect. 2, we formulate the model in detail. In Sect. 3, we undertake some prelimi-
nary analysis and introduce the notions ofweak and local persistence, spreading speeds
and travelling wave speed. In Sect. 4, we analyze the linear model on an unbounded
domain. We give an explicit solution, a condition for weak persistence, compute the
upstream and downstream travelling wave speeds, and formulate the local persistence
conditions in terms of minimum upstream and downstream travelling wave speeds.
In Sect. 5, we study the nonlinear model on an unbounded domain, formally con-
necting the upstream and downstream spreading speed for the nonlinear model to the
minimum upstream and downstream travelling wave speeds. In Sect. 6, we focus on
the finite domain case, using the average dispersal success (ADS) approach, to obtain
an approximate expression for the critical domain size. Furthermore, in Sect. 7, we
connect our model to empirical work, estimate parameter values, and use numerics to
illustrate the accuracy of the ADS approach. We finish with a discussion.

2 Model formulation

We formulate a mixed continuous–discrete model for a single population of a stream
insect species (e.g. stoneflies, mayflies) with two distinct, non-overlapping develop-
mental stages.During the aquatic larval stage at the beginningof the season, individuals
grow, compete and mature. During the winged adult stage in the second part of the
season, individuals emerge from the water, disperse and deposit eggs that develop into
larvae at the beginning of the next season; see Fig. 1. This winged stage is typically
very short, adult mayflies do not feed.

Fig. 1 Diagram showing the
life cycle of a stonefly. Larvae
are present at ‘0’, develop into
nymphs that drift down the
stream or river. At ‘τ ’ the
winged adults emerge and fly to
deposit eggs
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We denote the density of the larval population at time t and location x during season
n as un(x, t). Larvae are transported by diffusion (with rate d > 0) and drift (with
speed q ≥ 0), and experience possibly density-dependent death according to some
positive function f . The equation describing the larval density during a season of
length τ is

∂un
∂t

= d
∂2un
∂x2

− q
∂un
∂x

− f (un), un(x, 0) = un,0, (2.1)

for 0 ≤ t ≤ τ. We assume that mortality f (u) = αu + f1(u) consists of a constant
backgroundmortality rateα > 0 and an additional density-dependentmortality source
f1(u) that satisfies f1 ≥ 0, f1(0) = f ′

1(0) = 0. When we consider a very long river,
Eq. (2.1) is valid for x ∈ R. When we consider a short river, say of length L , we
impose boundary conditions on the interval x ∈ [0, L]. In general, we formulate these
conditions in terms of the flux as

dux − qu = a1u, x = 0,

dux − qu = −a2u, x = L , (2.2)

where ai ≥ 0. The sign condition ensures that no individuals enter the domain at
either boundary; individuals may or may not leave the domain. A typical choice for
the upstream condition is zero flux, so a1 = 0 (Vasilyeva and Lutscher 2011; Lou and
Lutscher 2013). Downstream, conditions could be hostile (a2 → ∞) or ‘free flow’
(a2 = q), see Lutscher et al. (2006) for a detailed derivation of these conditions. We
denote the solution operator of Eq. (2.1) by Qτ , i.e. un(x, τ ) = Qτ [un,0].

To describe dispersal of adult insects by flight we employ a dispersal kernel, K , that
gives the probability density function of the signed dispersal distances. Specifically,
if u is the density of individuals at the beginning of the winged stage, then the density
at the end of the winged stage is given by the convolution

(K ∗ u)(x) =
∫ ∞

−∞
K (x − y)u(y)dy (2.3)

(Lutscher et al. 2010). Naturally, we require K ≥ 0 and
∫ ∞
−∞ K (x)dx = 1. We do not

require K to be symmetric so as to accommodate potentially upstream-biased adult
flight.

Dispersal of adults on a bounded domain may or may not be described by a convo-
lution as in (2.3). We will assume that individuals move as if the domain were infinite,
but die when they land outside of the favorable patch [0, L]. In this case, the domain
of integration for the convolution is simply truncated to [0, L] (Kot and Schaffer 1986;
Lutscher et al. 2005). More generally, when individual dispersal behavior changes at
the boundary of the domain, dispersal probabilities depend on initial and final location
and not only on distance. Those dispersal scenarios are discussed inmore detail byVan
Kirk and Lewis (1999) and Musgrave and Lutscher (2013). In the case of a bounded
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domain, we write the adult density after dispersal as

∫ L

0
K̄ (x, y)u(y)dy. (2.4)

We still require that K̄ be positive, but since individuals may leave the domain during
dispersal, we only have the integral inequality

∫ L
0 K̄ (x, y)dx ≤ 1.

To describe egg deposition and survival until the larval stage, we consider a differ-
entiable function g = g(u). We require g(0) = 0, with g(u), g′(u) > 0, g′′(u) < 0
for u > 0, and g(u) < u for large enough u. The Beverton–Holt function satisfies the
requirements for g, but an Allee effect or the Ricker function are excluded.

Combining the equations above on the infinite domain, we arrive at the following
model within and between seasons

∂un
∂t

= d
∂2un
∂x2

− q
∂un
∂x

− f (un), 0 ≤ t ≤ τ, un(x, 0) = un,0(x)

un+1,0(x) = g

(∫ ∞

−∞
K (x − y)(un(y, τ ))dy

)
(2.5)

The discrete updating function from the beginning of one season to the next is

un+1,0 = Q[un,0] := g(K ∗ Qτ [un,0]). (2.6)

On a bounded domain, boundary conditions are added to the reaction–advection–
diffusion equation, and the domain of integration in the convolution integral is replaced
by [0, L].

Wewill frequently study the linearization of model (2.5) at zero, which is given by

∂un
∂t

= d
∂2un
∂x2

− q
∂un
∂x

− αun, (2.7)

un+1,0(x) = ρ

∫ ∞

−∞
K (x − y)un(y, τ )dy, (2.8)

where ρ = g′(0) > 0. The first equation is valid for 0 ≤ t ≤ τ, and uses initial
conditions un(x, 0) = un,0(x).

3 Preliminary analysis and definitions

We note that all three parts of the model satisfy a comparison principle.

Lemma 3.1 Assume v0, w0 are non-negative continuous functions onR and v0(x) ≤
w0(x) for all x ∈ R.We denote by v(x, t) andw(x, t) the solutions of (2.1)with initial
conditions v0 and w0. Then we have

1. v(x, t) ≤ w(x, t) for all x ∈ R, 0 < t ≤ τ,

2. (K ∗ v0)(x) ≤ (K ∗ w0)(x) for all x ∈ R, and
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3. g(v0(x)) ≤ g(w0(x)) for all x ∈ R.

The proof of this lemma follows from the comparison principle for reaction–
diffusion equations, from the non-negativity of K and from the monotonicity
assumption on g. This lemma implies that the next-generation operator Q in (2.6)
has the same monotonicity property. Obviously, the same is true for the linearized
model.

On an unbounded spatial domain we can consider spatially constant solutions to
(2.6). If we start with a constant positive profile u0(x, 0) = g(U0) then the solution
un(x, 0) of (2.5) remains spatially constant, and satisfies:

dUn

dt
= −αUn − f1(Un), 0 ≤ t ≤ τ

Un+1(0) = g(Un(τ )). (3.1)

Lewis and Li (2012) calculated the solutions to this model explicitly in the special
case where f1(U ) = γU 2. In general, the differential equation in (3.1) defines a map
U 	→ F(U ), where F(U ) is the solution at time τ of the differential equation with
initial condition U. We have F(0) = 0, F(U ) > 0 if U > 0, F(U ) < U , and F is
strictly monotone increasing. Furthermore, F ′(U ) ≤ F ′(0) = exp(−ατ).

Next, we consider the function H(U ) = g(F(U )) with g as in Sect. 2. By the
properties of F and g, H is strictly increasing, and we find

H(0) = 0, H ′(0) = g′(0)F ′(0) = ρe−αt ,
H(U )

U
≤ g(U )

U
,

and the latter expression is less than unity for large U. Hence, we have the following
observation about the non-spatial model (3.1).

Lemma 3.2 (cf. Lewis and Li 2012)

1. If g′(0) ≤ eατ and U0 > 0, then Un+1 ≤ Un and limn→∞ Un = 0.
2. If g′(0) > eατ then there exists a unique U∗ > 0 with H(U∗) = U∗.
3. If g′(0) > eατ and 0 < U0 < U∗, then Un+1 > Un and limn→∞ Un = U∗.

With this lemma, we can establish a necessary condition for non-extinction in the
nonlinear spatial model (2.5). The proof of the following proposition follows from the
comparison principle in Lemma 3.1.

Proposition 3.3 Suppose g′(0) ≤ eατ . Let un(x, 0) be a solution of (2.5), with
bounded, non-negative initial condition u0(x, 0). Then un(x, 0) → 0 uniformly in
x.

In our analysis of (2.6) we will use classical concepts of persistence, spreading
speeds and travelling wave speeds. Given an initial population of n0 individuals, intro-
duced locally, so that the density is nonzero on a bounded set and zero outside that
set, we say that the population is weakly uniformly persistent (sensu Freedman and
Moson 1990) if

lim inf
n→∞ sup

x∈R
un(x, 0) > ε. (3.2)
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Because of movement bias, however, a weakly persistent population on an infinite
domain could be transported away from any point faster than it can grow at that point.
This scenario is illustrated in Figure 1(b) in Byers and Pringle (2006) and discussed
in more detail in Lutscher et al. (2010).

For a definition of local persistence, we require that a population remains bounded
below at some fixed location. In other words, there exist ε > 0 and x ∈ R, such that for
all sufficiently large n, we have un(x, 0) > ε. In particular, we define the population
to be locally persistent if

sup
x∈R

lim inf
n→∞ un(x, 0) > ε. (3.3)

However, on an infinite domain, it is much more practical to formulate this persistence
condition in terms of upstream and downstream spreading speeds. Namely, a popula-
tion persists if its spreading speeds in both directions are positive; see also Lutscher
et al. (2010). We need to consider spreading speeds in both directions, since a net bias
in either direction could cause the spreading speed in either direction to be positive or
negative.

More formally, given initial conditions that are nonzero on a bounded set, and zero
outside of that set, the upstream spreading speed is defined by

lim
n→∞ sup

x<−(c+∗ +ε)t

un(x, 0) = 0

and

lim
n→∞ sup

−(c+∗ −ε)t<x<0

|un(x, 0) −U∗| = 0

for 0 < ε ≤ c+∗ where ε 
 1. Roughly speaking, if an observermoves upstream (to the
left) faster than the upstream spreading speed, the observer sees the un-invaded steady
state. On the other hand, if the observer moves upstream slower than the upstream
spreading speed, the observer sees the carrying capacity steady state u = U∗. The
downstream spreading speed is defined analogously by

lim
n→∞ sup

x>(c−∗ +ε)t

un(x, 0) = 0

and

lim
n→∞ sup

0<x<(c−∗ −ε)t

|un(x, 0) −U∗| = 0

for 0 < ε ≤ c−∗ where ε 
 1, and has a similar interpretation, with the observer
moving downstream (to the right).

The advantage of formulating persistence in terms of upstream and downstream
spreading speeds is that the spreading speeds are linearly determined andgiven by asso-
ciated minimum traveling wave speeds, and these are straightforward to calculate. A
travelingwavemovingupstreamat speed c+ takes the formun+1(x, 0) = un(x+c+, 0)
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where limx→−∞ un(x, 0) = 0 and limx→∞ un(x, 0) = U∗ (nonlinear system) or
limx→∞ un(x, 0) = ∞ (linear system).A travelingwavemoving downstreamat speed
c− takes the form un+1(x, 0) = un(x − c−, 0) where limx→−∞ un(x, 0) = U∗ (non-
linear system) or limx→−∞ un(x, 0) = ∞ (linear system) and limx→∞ un(x, 0) = 0.
We give the formal connection between spreading speeds and traveling wave speeds
in Theorem 5.2.

4 Linear dynamics on the unbounded domain

In this section, for the linear model (2.7, 2.8), we study conditions for persistence
according to our definitions, and we derive the dispersion relation between the speed
of a traveling wave and its steepness at the leading edge.

Equation (2.7) possesses the explicit solution:

un(x, τ ) =
∫ ∞

−∞
e−ατ�qτ,2dτ (x − y)un(y, 0)dy, (4.1)

where �qτ,2dτ denotes the Gaussian distribution with mean qτ and variance 2dτ

�qτ,2dτ (x) = 1

2
√

πdτ
exp

(
− (x − qτ)2

4dτ

)
. (4.2)

Substituting this solution into the second equation, we get the iteration scheme:

un+1(x, 0) = ρe−ατ (K ∗ �qτ,2dτ ) ∗ un(x, 0). (4.3)

Hence, the linearized model on the unbounded domain is equivalent to an integrod-
ifference equation with a convolution of two kernels. Such a model with various
combinations of mechanistically derived kernels was studied in the context of the drift
paradox by Lutscher et al. (2010).

We begin by deriving a sufficient condition for extinction of the population.

Proposition 4.1 The condition ρ < eατ is a sufficient condition for extinction for
model (2.7, 2.8).

Proof First, if u0(x, 0) = U0 is a constant, then un(x, t) is spatially constant, for any
n and t. Thus, un(x, t) = Un(t) solves the iteration

dUn

dt
= −αUn, 0 < t < τ,

Un+1(0) = ρUn(τ ).

The explicit solution of this iteration is

Un(t) = e−αt (ρe−ατ )n−1U0, 0 ≤ t ≤ τ. (4.4)

This iteration converges to zero exactly if ρ < eατ .
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Now, assume u0(x, 0) is some non-negative function, bounded above by a constant
U0. By the comparison principle in Lemma 3.1, the solution un(x, t) is bounded above
by the solution Un(t), for all x ∈ R. Therefore, the extinction condition holds. �

The reverse of the above inequality is sufficient for a spatially constant function
u0(x, 0) = U0 to grow. In the linear system, growth will be geometric, while in the
associated nonlinear system, growth will move the population towards the carrying
capacity U∗, which is defined as the unique positive spatially constant fixed point for
Eq. (2.6).

The inequality, ρ > eατ , is clearly a necessary condition for persistence for spa-
tially non-constant functions. Whether it is also sufficient depends on the definition
of persistence. It turns out that it is a sufficient condition for weak persistence, but not
local persistence.

Lemma 4.2 Solutions to Eq. (4.3)withρ > eατ and initial data nonzero on a bounded
set are weakly persistent in the sense of Eq. (3.2). In other words, there exists some
ε > 0 such that for all n > n∗ there exists xn ∈ R such that un(xn, 0) > ε.

A proof is given in the Appendix. By way of contrast, an example where the
condition ρ > eατ is not sufficient for local persistence is given in Example 4.3,
below.

To investigate the issue of local persistence on an infinite domain, we determine
the upstream and downstream travelling wave speeds for the linear system. First,
we consider a fixed profile at the beginning of the larval stage, traveling upstream
with some constant speed, c+. Thus, we assume a solution of the form un+1(x, 0) =
un(x + c+, 0). In our linear model, we use the exponential ansatz un(x, 0) = esx ,
where s > 0.

Thus, we have

esx+sc+ = ρ

∫ ∞

−∞
K (x − y)un(y, τ )dy, (4.5)

where

un(y, τ ) = e−ατ 1

2
√

πdτ

∫ ∞

−∞
e− (y−z−qτ )2

4dτ eszdz. (4.6)

From the change of variables w = y − z − qτ , we obtain

un(y, τ ) = e−ατ+sy−sqτ−dτ s2 . (4.7)

Inserting this expression into (4.5) and using another change of variables, we can
cancel the term esx from both sides of the equation and obtain the dispersion relation

esc
+ = ρe−ατ−sqτ+dτ s2M(−s), (4.8)

where M is the moment generating function of kernel K , i.e. M(s) = ∫
K (x)esxdx .

Taking logarithms, we can define the upstream speed as a function of the steepness of
the profile as

c+(s) = ln(ρM(−s)) − ατ

s
− qτ + dτ s. (4.9)
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For the downstream travelling wave speed c−, we make the corresponding ansatz
un(x, 0) = e−sx , where s > 0. Accordingly, we obtain the downstream speed as

c−(s) = ln(ρM(s)) − ατ

s
+ qτ + dτ s. (4.10)

If dispersal during the adult state is unbiased, then K is symmetric and so is M . Then,
the only difference in the expressions for c+ and c− is in the sign of larval drift q.

The local persistence condition, in terms ofminimum travellingwave speeds, there-
fore takes the form

inf
s>0

c+(s) > 0 and inf
s>0

c−(s) > 0. (4.11)

We equate the minimum travelling wave speeds of this linear system to the spreading
speeds of the nonlinear system in Theorem 5.2. We finish this section by deriving an
explicit persistence condition in the following special case.

Example 4.3 Suppose K (x) is a Gaussian distribution with mean μ and variance σ 2,

denoted by �μ,σ 2 as in (4.2). When μ and q are of opposite sign, then adult dispersal
and larval dispersal are biased in opposite directions. The moment generating function
is M(s) = exp(μs + 1

2σ
2s2). Substituting M(s) into (4.9) and (4.10), we obtain

c±(s) = ln(ρ) − ατ

s
+

(
σ 2

2
+ dτ

)
s ∓ (μ + qτ) . (4.12)

Note that if the extinction condition is satisfied, i.e. ln ρ − ατ < 0, then c±(s) →
−∞ as s → 0+. Thus, in this case, the infimum in (4.11) is undefined, and the
population does not spread. Similarly, when ρ = eατ , the infimum in (4.11) is zero
and the population does not spread either.

From now on, we assume ρ > eατ . We observe that c±(s) approach infinity as
s → 0+ and s → ∞. Thus, c±(s) attain a minimum on (0,∞). Since c+(s) and
c−(s) differ only by a constant, this minimum occurs at the same point, say s∗ > 0.
Setting the derivative of either function to zero, we get the unique critical point

s∗ =
√
ln(ρ) − ατ

σ 2/2 + dτ
. (4.13)

Thus, the upstream and downstream spreading speeds are given by

c±(s∗) = 2

√
(ln(ρ) − ατ)

(
σ 2

2
+ dτ

)
∓ (μ + qτ) . (4.14)

We note that c+(s∗) > 0 and c−(s∗) > 0 are each equivalent to ρ > eατ e
(μ+qτ )2

2(σ2+2τd) .

Thus, the population spreads in both directions exactly when

ρ > eατ e
(μ+qτ )2

2(σ2+2dτ ) . (4.15)
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This condition is, in general, stronger than the non-extinction condition ρ > eατ .

The two conditions are equal only if μ = −qτ, i.e. the upstream dispersal bias and
the downstream drift precisely compensate each other. In that case, the upstream and
downstream speeds are equal. All else being equal, the minimal per capita growth
rate required for spread in both directions increases with the total net displacement by
directed movement (given by |μ+qτ |) and decreases with the total amount of random
movement (given by σ 2 + dτ ).

5 Nonlinear model on unbounded domain

We now return to the nonlinear model (2.5) on the unbounded domain and use the
theory developed inWeinberger (1982) to prove the existence and linear determinacyof
the upstream and downstream spreading speed, and the equivalence of these spreading
speeds with the minimum travelling wave speeds in the upstream and downstream
directions. Most applications of Weinberger (1982) focus on the case where spreading
speeds are identical in both direction, but the theory also applies to the case where
there are different speeds in different directions, as illustrated in Li et al. (2009).

For the remainder of this section, we assume that the condition g′(0) > eατ holds.
We define B as the set of non-negative continuous functions on R that are bounded
by U∗, the fixed point of the map H above. To apply Weinberger’s spreading speed
theory, we establish the basic facts about our solution operator Q in (2.6), namely
Hypotheses (3.1) in Weinberger (1982). These are

H1 Q[u] ∈ B for all u ∈ B;
H2 Q commutes with Ty where Ty[u](x) = u(x − y);
H3 there are constants 0 ≤ π0 < π1 ≤ π+ such that Q[β] > β for β ∈ (π0, π1),

Q[π0] = π0, Q[π1] = π1, if π1 < ∞;
H4 u ≤ v implies Q[u] ≤ Q[v];
H5 un → u uniformly on each bounded interval implies that Q[un] → Q[u] point-

wise.

By the comparison Lemma 3.1, operator Q leaves B invariant so H1 is satisfied. To
evaluate H2, observe that Q commutes with all translations of the real line. It is clear
that operator Qτ commutes with all translations. For the convolution, we see this fact
from the change of variables

∫ ∞

−∞
K (x − y − z)v(z)dz =

∫ ∞

−∞
K (x − s)v(s − y)ds

and for the map g that is applied pointwise, it is clear. The properties in H3,

Q[0] = 0, Q[U∗] = U∗, and Q[U ] > U for U ∈ (0,U∗),

are clear from the properties of the function H, defined previously. By the comparison
Lemma 3.1, operator Q is also order preserving, so that H4 is satisfied.

The time-τ -map Qτ of the reaction–advection–diffusion equation is compact in B
in the topology of uniform convergence on every bounded interval. In addition:
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Lemma 5.1 The convolution operator u 	→ K ∗ u is compact in B.

A proof is given in the Appendix. Because g is continuous, the above two results
are sufficient to make Q (2.6) compact in B in the topology of uniform convergence
on every bounded interval.

Altogether, by applying the results from Weinberger (1982), we find the following
result.

Theorem 5.2 The rightward and leftward spreading speeds c±∗ exist for model (2.5).
For every c > c+∗ (c > c−∗ ) there exists a rightward (leftward) traveling wave of speed
c. Furthermore, the system is linearly determined, i.e. c±∗ = infs>0 c±(s), see (4.11).

6 Critical domain size

In this section, we explore the dynamics of our model on the bounded domain [0, L].
Depending on the choice of boundary conditions in (2.2) and dispersal kernel, individ-
uals may leave the domain but cannot enter. Since we have excluded an Allee effect
from the dynamics of our model, we have the classical set-up of the critical patch-size
problem.We expect there to be a minimum value L∗, below which the population will
go extinct, and above which it will persist.

The larval drift model (2.1) on the bounded domain [0, L] and with boundary
conditions in (2.2) is well defined in some appropriate function space, for example
the space of square integrable functions on [0, L]. In analogy with the solution on the
unbounded domain, we denote its solution with initial condition un,0 as un(x, τ ) =
Q̄τ [un,0]. Accordingly, the next-generation map is

un+1,0(x) = g

(∫ L

0
K̄ (x, y)Q̄τ [un,0](y)dy

)
. (6.1)

We assume that K̄ is a continuous function that is bounded below by some positive
constant. Then the next-generation operator is positive and completely continuous
on the space of square-integrable functions. To define its derivative, we consider the
Green’s function, Ḡ, of the linearization of the advection–diffusion equation on the
bounded domain [0, L], namely

∂Ḡ

∂t
= d

∂2Ḡ

∂x2
− q

∂Ḡ

∂x
− αḠ, Ḡ(x, y, 0) = δ(x − y), (6.2)

with boundary conditions

d
∂Ḡ

∂x
− qḠ = a1Ḡ, x = 0, d

∂Ḡ

∂x
− qḠ = −a2Ḡ, x = L . (6.3)

Then the solution Ḡ(x, y, τ ) is the linearization of Q̄τ at zero (Lewis and Li 2012).
Using the chain rule, the Fréchet derivative of the operator in (6.1) at zero is given by
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φ 	→ ρ

∫ L

0

∫ L

0
K̄ (x, y)Ḡ(y, z, τ )dyφ(z)dz =: ρ

∫ L

0
K̂ (x, z)φ(z)dz. (6.4)

Under the assumptions in this paper, this Fréchet derivative is a superpositive operator,
i.e. it has a simple dominant eigenvalue with positive eigenfunction, and no other
eigenfunction is positive (Krasnosel’skii 1964; Lutscher and Lewis 2004). The critical
domain size is given when the dominant eigenvalue of this operator equals unity.

In general, it is impossible to derive an exact explicit expression for the critical
domain size. In the special case where τ = 0, and K̄ is a truncated Laplace kernel,
such an explicit expression is available (Kot and Schaffer 1986). Even when the kernel
is a convolution of two Laplace kernels, an expression can be obtained through the
reduction of the integral equation to a differential equation (Jin and Lewis 2011). Since
in our case such a reduction, and therefore explicit expression, is impossible, we look
for an explicit but approximate expression for the dominant eigenvalue and the critical
domain size.

We find the desired approximate expression for the dominant eigenvalue by using
the average dispersal success approximation for integral operators (Van Kirk and
Lewis 1997; Lutscher and Lewis 2004; Fagan and Lutscher 2006) and related ideas
for partial differential equations (Vasilyeva and Lutscher 2012; Cobbold and Lutscher
2013). Indeed, spatial averaging shows that to first order, the dominant eigenvalue λ

of the linearized operator in (6.4) is given by λ ≈ ρ Ŝ, where

Ŝ = 1

L

∫ L

0

∫ L

0
K̂ (x, z)dxdz (6.5)

is the average dispersal success (ADS) of kernel K̂ . When K̂ is symmetric, then this
approximation presents an upper bound of the dominant eigenvalue and is therefore a
conservative estimate of population growth or extinction.

To calculate the ADS for K̂ , we use Fubini’s theorem and obtain

λ ≈ ρ
1

L

∫ L

0

∫ L

0

∫ L

0
K̄ (x, z)Ḡ(z, y, τ )dzdydx = ρ

1

L

∫ L

0
sK (z)rG(z)dz, (6.6)

where sK (y) = ∫ L
0 K̄ (x, y)dx is the dispersal success function for K̄ , and rG(x) =∫ L

0 Ḡ(x, y, τ )dy is the redistribution function for Ḡ (Lutscher and Lewis 2004).
The redistribution function rG(x) denotes the density of individuals at the end

of the aquatic stage, given that they were initially distributed in a spatially uniform
manner. The dispersal success function sK (y) denotes the probability that an individual
dispersing from the point y, 0 ≤ y ≤ L , remains in the domain [0, L] after dispersal.
Formula (6.6) has a nice interpretation in this two-stage process.Given a uniform initial
density of individuals, function rG indicates where individualsmove to during the first,
aquatic dispersal phase, and function sK indicates fromwhere those individualsmanage
to stay in the domain during the second, airborne dispersal phase. Dispersal success is
high if the locations where individuals frequently settle after the first phase coincide
with locations where recruitment into the domain is high in the second phase.
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For a given kernel K̄ , the dispersal success function can be evaluated in a straight-
forward manner, but since Ḡ is given only indirectly as the Green’s function of a
differential operator, we now derive an approximation to rG in terms of the underlying
differential equation.

We start by noting that rG(x) = u(x, τ ), where u(x, t) is the solution of the linear
reaction–diffusion–advection equation (2.7) with boundary conditions (2.2) and initial
value u(x, 0) = 1. Indeed,

u(x, τ ) =
∫ L

0
Ḡ(x, y, τ )u(y, 0)dy =

∫ L

0
Ḡ(x, y, τ ) · 1dy = rG(x). (6.7)

Assuming that τ is large enough (which reflects the fact that the larval stage is the
longest stage of the life cycle) and that the spectral gap between the first and second
eigenvalue of equation (2.7) with boundary conditions (2.2) is large enough, we can
approximate rG(x) by eλ1τ φ1(x), where λ1 is the principal eigenvalue of (2.7) with
boundary conditions (2.2), and φ1(x) is the corresponding positive eigenfunction with
average equal to unity. In the following, we give a few examples of rG and sK .

6.1 Hostile boundary conditions

When the boundary conditions for the reaction–advection–diffusion equations are
hostile, we can calculate the approximate redistribution function explicitly. Hostile
boundary conditions result when a1,2 → ∞ in conditions (6.3). The resulting eigen-
value problem

λ1φ1 = dφ′′
1 − qφ′

1 − αφ1, φ1(0) = φ1(L) = 0 (6.8)

is best solved by using the transformation v(x) = w(x) exp(qx/(2d)). We find

λ1 = −
(

π2d

L2 + q2

4d
+ α

)
, φ1(x) = A1e

qx
2d sin(πx/L). (6.9)

We determine A1 by scaling the average of φ1 to unity, and we obtain the approximate
expression

rG(x) ≈ eλ1τ φ1 = eλ1τ

q2L2

4πd2
+ π

e
qL
2d + 1

e
qx
2d sin(πx/L). (6.10)

6.2 Danckwerts boundary conditions

We calculate this eigenfunction for zero flux upstream and free-flow downstream
conditions, i.e. a1 = 0, a2 = q. Using Prop. 2.1 from Vasilyeva and Lutscher (2011),
we find

φ1(x) = A1e
q
2d x cos (θ1x) + B1e

q
2d x sin (θ1x) , (6.11)
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where θ1 =
√

−4d(λ1+α)−q2

2d , and A1, B1 are constants. From the condition that the
expression under the root be positive, we obtain the bound λ < −(q2/(4d) + α). In
fact, solving for λ1, we find the analogous expression to (6.9) as

λ1 = −
(

θ21 d + q2

4d
+ α

)
. (6.12)

The boundary conditions impose the conditions of the coefficients

B1 = q

2θ1d
A1, and tan(θ1L) = 2dθ1q

4d2θ21 − q2
. (6.13)

The latter equality defines a sequence of eigenvalues for (2.7, 2.2), and in particular
λ1. We normalize the eigenfunction so that its average equals unity and arrive at

φ1(x) =
e
qx
2d

(
cos(θ1x) + q

2θ1d
sin(θ1x)

)

1
L

∫ L
0 e

qx
2d

[
cos(θ1x) + q

2θ1d
sin(θ1x)

]
dx

. (6.14)

6.3 Normal distribution for adult flight

When the adult dispersal stage is modeled by a Normal distribution with mean μ and
variance σ 2, we have

K (x) = 1

2σ
√

π
exp

(
− (x − μ)2

2σ 2

)
. (6.15)

The dispersal success function of this kernel can be written in terms of the so-called
error function

sK (x) = 1

2

[
erf

(
x − μ

σ
√
2

)
− erf

(
x − μ − L

σ
√
2

)]
. (6.16)

6.4 Laplace distribution for adult flight

We can also describe adult flight by a possibly shifted, asymmetric Laplace kernel

K (x) =
{
Aeb1(x−x̄), x < x̄
Ae−b2(x−x̄), x ≥ x̄,

(6.17)

where b1,2 > 0 and A = b1b2
b2+b1

. When x̄ = 0, this kernel can be derived from a
process of random movement and constant settling (Lutscher et al. 2005). The mean,
variance and skewness of this kernel are
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μ = 1

b2
− 1

b1
+ x̄, σ 2 = 1

b22
+ 1

b21
, γ1 = 2

b31 − b32
(b21 + b22)

3/2
. (6.18)

The dispersal success function can be calculated explicitly as follows:

(a) if x̄ < −L then

sK (z) = − A

b2
eb2(z+x̄)(e−b2L − 1), 0 ≤ z ≤ L; (6.19)

(b) if −L ≤ x̄ ≤ 0, then

sK (z) =
⎧⎨
⎩

− A
b2
eb2(z+x̄)(e−b2L − 1), 0 ≤ z ≤ −x̄

A
(
1−e−b1(z+x̄)

b1
+ 1−e−b2(L−z−x̄)

b2

)
, −x̄ ≤ z ≤ L ,

(6.20)

We explore some of these formulas and their sensitivity with respect to parameter
values in the next section.

7 Parameters and numerical results

To illustrate some of our results, we find parameter estimates (for the linear model) for
stoneflies (Plecoptera) from the literature. The hydrological conditions for Broadstone
Stream in southeast England are reported by Speirs and Gurney (2001). This 750m
long stream moves with average speed q̂ = 4 km/day. Citing work by Townsend and
Hildrew (1976), about relative abundance of stoneflies in drift and benthos, Speirs and
Gurney argue that the effective drift velocity for stoneflies should be only 0.01 % of
the flow speed, so that q = 0.4 m/day. The diffusion coefficient is much harder to
estimate; Speirs and Gurney use d = 0.021 km2/day for simulations.

A single female stonefly can lay several hundred or even a few thousand eggs.
Assuming a 50/50 sex-ratio, we choose ρ = 1000. The death rate (α) is strongly
dependent on conditions. Low oxygen levels can induce high mortality in stoneflies.
Main predators are fish, but those are absent from Broadstone Stream. We consider
values of α that result in the (non-spatial) basic reproduction number R0 = ρe−ατ to
be in the range [1.0015, 2.5]. Accordingly, α ∈ [0.03, 0.0345], which corresponds to
between 0.1 and 0.25 % survival probability during a 200-day drift period.

For adult dispersal, we use the data from MacNeale et al. (2005), who marked,
released and recaptured 190 stoneflies. Specifically, their histogram of dispersal dis-
tances is the basis of Fig. 2. We used least squares to fit a Gaussian kernel and a
generalized Laplace kernel to this histogram. The resulting mean and variance of the
Gaussian kernel are μ = −172 m and σ 2 = 28079 m2.

7.1 Persistence and average dispersal success

The boundary conditions for the drift stage of the population have a profound effect
on the persistence conditions when the domain is short. We obtain a rough estimate for
the required growth rate ρ by setting λ = 1 in (6.5) and find the condition ρ > 1/Ŝ.

Whenboundary conditions are hostile at the upstreamanddownstreamend, the average
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Fig. 2 Comparison of the histogram fromMacNeale et al. (2005) with two different (scaled) distributions.
Parameters for the Gaussian kernel (6.15) and the generalized Laplace kernel (6.17) were obtained by
minimizing the sum of squared differences with the histogram

dispersal success is extremely low (Ŝ ∼ 10−35) so that the population cannot persist
despite its high reproductive output. With Danckwerts boundary conditions, the ADS
is much higher (Ŝ = 0.0017) and the population can easily persist, given its high
reproductive output. The average dispersal success for hostile boundary conditions is
highly sensitive to domain length, much more so than for Danckwerts conditions. For
example, increasing the length of the stream to 10 km increases the ADS for hostile
conditions to Ŝ ∼ 10−4 so that persistence of the species is possible with ρ > 1900,
which seems to be within the possible range. For Danckwerts conditions, we find
Ŝ = 0.0024 for those values. (All of these calculations refer to α = 0.03.)

We illustrate the redistribution function and dispersal success function for this case
in Fig. 3. The redistribution function for hostile conditions is highest near the center
of the domain. Towards the boundaries, the risk of boundary loss increases. For the
Danckwerts conditions, the redistribution function is higher at the downstream end
since individuals get transported there but only leave the domain by advection and not
by diffusion. The dispersal success function with negative μ and smaller σ 2 is shifted
to the upstream end (left); and has a long plateau because of the relatively smaller
variance (solid line). For larger variance and zero mean, we see a symmetric function
with a smaller plateau in the middle (dashed).

For comparison, Speirs and Gurney (2001) considered the population without adult
flight stage. They used zero flux boundary conditions upstream and hostile conditions
downstream; a situation somewhere in between our two cases. They found that the
population can easily persist. The rescaling of the advection speed according to benthic
residence time (see above) is crucial for persistence in both cases. Without a benthic
refuge where stoneflies are not transported downstream, the population cannot persist,
irrespective of the boundary conditions.
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Fig. 3 Left panel the redistribution functions for hostile boundary conditions (solid) as in (6.10) and for
Danckwerts conditions (dashed) as in (6.14). Parameters are τ = 200 days, L = 10 km, d = 0.021 km2/day,
q = 0.4 m/day, α = 0.03. Right panel the dispersal success function for a a Gaussian dispersal kernel as in
(6.16). Parameters are L = 10 km, μ = −172 m, σ 2 = 28079 m2 (solid) and μ = 0 m, σ 2 = 280790 m2

(dashed)

Fig. 4 Tornado plot of PRCCs, showing the sensitivity of the average dispersal success Ŝ to all parameters
with Danckwerts boundary conditions. Mean parameter values are varied by ±20 %, N = 1000 samples
were generated for the Latin hypercube sample. Mean values are as in the previous figure. Here σ 2 is the
variance of the dispersal kernel, μ is the shift of the dispersal kernel, α is the mortality rate in the water, q
is the advection speed, d is the diffusion coefficient, L is the domain size and τ is the length of time in the
aquatic phase

To explore the effect of different parameters on persistence, we chose to vary each
parameter uniformly around its mean value by ±20 % and performed a sensitivity
analysis based on Latin hypercube sampling and partial rank correlation coefficients
(PRCC), after visually inspecting that the relationship between each of the parameters
and the average dispersal success is monotone (Marino et al. 2008). For the chosen
values, we find that Ŝ is most sensitive to domain length (positive) and to mortality
and time in drift (negative), see Fig. 4.
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If the population can persist, solutions will approach a positive impulsive periodic
orbit. Population levels decline throughout the year due to death and increase sharply
once a year due to births. The shape of the spatial distribution depends on the boundary
conditions for the drift stage and the shape of the dispersal kernel. In Fig. 5, we chose
Danckwerts’ boundary conditions and a Gaussian dispersal kernel. At the end of the
drift phase, the upstream end (x = 0) is lowest, and the density profile is increas-
ing downstream. At the beginning of the next drift phase, the population decreases
downstream since adult flight and egg deposition are biased upstream.

7.2 Population spread

When a population can persist on a bounded domain, it can spread upstream and
downstream on the infinite domain. When adult dispersal is unbiased, the downstream
spread rate (c−) is higher than the upstream rate (c+), sincewater flow takes individuals
downstream. As the upstream bias of adult flight increases (μ < 0), the downstream
rate decreases and the upstream rate increases. At the estimated value μ = −172 m,
both speeds are positive so that the population can persist and spread in both directions.

Fig. 5 Dynamics of a
population approaching a stable
impulsive periodic orbit.
Danckwerts’ boundary
conditions and a Gaussian
dispersal kernel are used. Time
is in days, space is in meters.
Parameters are as in the text with
α = 0.0345. Population
reproduction is modeled by a
scaled Beverton–Holt function
g(u) = 1000u/(1 + 1000u)

Fig. 6 Upstream and downstream spread rates (c± in meters per generation) according to formula (4.14) as
a function of bias of adult flight (μ, left panel) and effective drift velocity (q, right panel). Fixed parameters
are τ = 200 days, d = 0.021 km2/day, q = 0.4 m/day, α = 0.0345, μ = −172 m, σ 2 = 28079 m2
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Fig. 7 A population spreads upstream and downstream from a small initial inoculation. The domain is
100 km long, the initial population is distributed over 2 km at the center of the domain. Danckwerts
boundary conditions and a Gaussian dispersal kernel are used with parameters as above

When adult dispersal is biased downstream (μ > 0) the upstream speed can eventually
decrease to zero so that the population cannot spread upstream. The left panel in Fig. 6
illustrates these observations for the Gaussian kernel, using the explicit formula in
Example 4.3.

Similarly, as we increase the effective drift speed (q), the upstream speed will
decrease and the downstream speed will increase. At the estimated value q = 0.4m/d,
both speeds are positive, and the population can persist and spread. Increasing down-
stream transport by a factor of about 4 will decrease the upstream speed below zero
so that the population cannot persist (see right panel in Fig. 6).

Figure 7 shows how the population spreads in both directions after a local intro-
duction in the center of the domain. For this scenario, we chose the same set-up as in
Fig. 5.

8 Discussion

This paper focuses on a mathematical model for persistence of river organisms with
multiple life stages, one in the drift, and the other on the river bank. While each life
stage has dispersal, the first stage dispersal is driven by water flow and the second is
driven by flight, possibly with an upstream bias. The result is a nonlinear dynamical
system, given by an impulsive reaction–advection–diffusion equation with non-local
impulse in space. Themodel extends earlierwork byLutscher et al. (2010)where linear
integrodifference equations were used to describe the same process. Our mathematical
analysis of the model builds on earlier work by Lewis and Li (2012) on the behaviour
of impulsive reaction diffusion equation with a local, rather than nonlocal, impulse in
space. However, the deeper mathematical foundations for the analysis can be found
in Weinberger (1982).

Our definitions of weak versus local persistence on an infinite domain allow us to
distinguish between populations that persist in the system, but not at any fixed loca-
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tion (weak persistence), versus populations that persist at a fixed location because they
maintain a toe hold there (local persistence). We connect the issue of local persistence
in the infinite domain to having positive upstream and downstream spreading speeds.
These speeds, in turn, are connected to the minimum travelling wave speeds for the
linearized operator, in upstream and downstream directions using the theory of Wein-
berger (1982). On the other hand, we would expect that a species that persists only
weakly is at risk of being washed out of the system when the domain size becomes
finite. However, the details of such outcomes depend crucially on the boundary con-
ditions for the finite domain. When these are applied it is possible to use dispersal
success theory (Lutscher and Lewis 2004) to analyze outcomes.

When our model is calibrated to the stone fly populations we observe that that either
weak or local persistence is possible on an infinite domain, depending on parameter
values, and, likewise, populations may or not persist on a finite domain, depending
on the parameters. Hence, an investigation on how individual parameter values affect
persistence is a useful undertaking. As shown in Fig. 4, the average dispersal success
in the river has varying sensitivity to the model parameters, but increases to stream
length (L) have the largest positive effects and increases to mortality rates (α) or
development times (τ ) have the largest negative effects on dispersal success. By way
of contrast, adult flight has a key role in determining local persistence of the population,
as illustrated explicitly in the persistence formula (4.15) in Example 4.3. There are
two mechanisms to decrease the requirements on the minimum reproductive output
for local persistence according to (4.15). Upstream bias in adult flight implies that
μ and q are of opposite signs, so that increasing μ decreases the right hand side of
(4.15), at least as long as |μ| < qτ. Variance in adult dispersal, on the other hand,
acts similarly to diffusion during the aquatic dispersal phase in that the population
is spread over a larger region, thereby enhancing upstream movement, and there by
persistence.

In this work, drift and diffusion rates in the flow were scaled by the fraction of
time that the larvae were in the flow versus residing on the benthos. An alternative
approach that could be used for future work would involve an additional compartment
for organisms on the benthos, with movement of individuals back and forth between
benthic and advection–diffusion compartments. This kind of approach has been used
successfully before, for example by Pachepsky et al. (2005) in their extension of the
Speirs and Gurney (2001) original reaction–diffusion–advection model for the drift
paradox. An even more general approach would involve a stage-structured impulsive
reaction–diffusion–advection system of equations. This would allow for insects with
overlapping generations as described by the stage-structured model. Currently such
theory is lacking, but could be developed in a straightforward way, based on Roger
Lui’s extensions (Lui 1989a, b) of the work by Weinberger (1982).
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Appendix

Proof of Lemma 4.2

Proof In Eq. (4.3), we have the iteration

un+1(x, 0) = ρe−ατ (K ∗ �qτ,2dτ ) ∗ un(x, 0).

Let us denote ν = ρe−ατ and L = K ∗�qτ,2dτ .Then un = νn L∗nu0,where ∗n denotes
the n-fold convolution. We assume that original number of individuals released is
||u0||1 = n0 on a bounded set of measure b. Without loss of generality we may choose
the set to be −b/2 < x < b/2.

By assumption, K and therefore L have finite mean and variance. We denote the
mean and variance of L by μ and σ 2, respectively. To show weak persistence for
ν > 1 we demonstrate that there exists an xn such that un(xn, 0) = νn L∗nu0(xn, 0)
grows for n sufficiently large. To start, we calculate the distance between L∗n−1L and
the related Gaussian distribution �nμ,nσ 2 . We expect this to become small because of
the Central Limit Theorem.

sup
x

|L∗n−1L(x) − �nμ,nσ 2(x)|

= 1

σ
√
n
sup
y

|σ√
nL∗n−1L(σ

√
ny + μ) − �0,1(y)| ≤ 1

σ
√
n

c

σ
√
n

= c

σ 2n
.

The convergence estimate was established by Petrov (1975), Theorem 10, Chapter
VII. Next we use Hölder’s Inequality to calculate the distance between L∗n−1L and
the corresponding Gaussian distribution �nμ,nσ 2 convolved with the initial condition
u0(x, 0).

sup
x

|L∗nu0(x, 0) − �nμ,nσ 2 ∗ u0(x, 0)|
= ||(L∗n − �nμ,nσ 2∗)u0(x, 0)||∞
≤ ||L∗n−1L(x) − �nμ,nσ 2(x)||∞||u0(x, 0)||1 = cn0

σ 2n
.

This arises from Hölder’s inequality (see, for example, Kuptsov 2001) and the trans-
lation invariance of the Lebesgue measure.

Therefore,we can bound the true solution above and belowby expressions involving
the Gaussian distribution:

�nμ,nσ 2 ∗ u0(x, 0) − cn0
σ 2n

≤ L∗nu0(x, 0) ≤ �nμ,nσ 2 ∗ u0(x, 0) + cn0
σ 2n

for all x . Multiplying by νn allows us to rewrite the left hand inequality as

un(x) ≥ νn
(
�nμ,nσ 2 ∗ u0(x, 0) − cn0

σ 2n

)
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for all x . To evaluate weak persistence, we choose x = xn = nμ so it tracks the mean
displacement of L . We observe that over the interval (nμ− b/2 ≤ x ≤ nμ+ b/2) the
quantity �nμ,nσ 2(x) ≥ �nμ,nσ 2(nμ + b/2). Hence

�nμ,nσ 2 ∗ u0(nμ) ≥ �nμ,nσ 2(b/2)n0 = n0e
− b2

8σ2n√
2πσ 2n

and so

un(nμ) ≥ n0ν
n

⎛
⎝ e

− b2

8σ2n√
2πσ 2n

− c

σ 2n

⎞
⎠ ≥ n0ν

n

⎛
⎝ e− b2

8σ2√
2πσ 2n

− c

σ 2n

⎞
⎠

The right hand quantity is positive and bounded below for all n > n∗ where n∗ >

2cπ eb
2/(8σ2)

σ 2 . Consequently, there exists some ε > 0 such that for all n > n∗ there
exists xn = μn ∈ R such that un(xn, 0) > ε. This makes the population weakly
persistent by definition (3.2). �

Proof of Lemma 5.1

Proof Consider a sequence vn → v in B. We show that K ∗ vn converges to K ∗ v

uniformly on compact subsets. By linearity, we may assume v = 0.
Consider M > 0 and ε > 0.We need to find N > 0 such that for any x ∈ [−M, M]

and n > N we have 0 ≤ (K ∗ vn)(x) < ε. Since K is integrable, we can find some
L > 0 such that

∫ ∞

L
K (z)dz <

ε

3U∗ and
∫ −L

−∞
K (z)dz <

ε

3U∗ .

By convergence, we can choose N > 0 be such that 0 ≤ vn(x) < ε
3 for n > N and

any x ∈ [−M − L , M + L]. Now, let x ∈ [−M, M] and n > N . Then

∫ ∞

−∞
K (x − y)vn(y)dy =

∫ −M−L

−∞
K (x − y)vn(y)dy +

∫ M+L

−M−L
K (x − y)vn(y)dy

+
∫ ∞

M+L
K (x − y)vn(y)dy,

where

∫ −M−L

−∞
K (x − y)vn(y)dy ≤ U∗

∫ ∞

x+M+L
K (z)dz ≤ U∗

∫ ∞

L
K (z)dz <

ε

3
,

∫ ∞

M+L
K (x − y)vn(y)dy ≤ U∗

∫ x−M−L

−∞
K (z)dz ≤ U∗

∫ −L

−∞
K (z)dz <

ε

3
,
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and

∫ M+L

−M−L
K (x − y)vn(y)dy ≤ ε

3

∫ M+L

−M−L
K (x − y)dy ≤ ε

3

∫ ∞

−∞
K (x − y)dy = ε

3
.

Thus,

(K ∗ vn)(x) =
∫ ∞

−∞
K (x − y)vn(y)dy < ε,

as needed. �
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